

A data-centric view on workflows that couple HPC with large-scale models

Ana Gainaru

Workshop on Advancing Neural Network Training NeurIPS, Dec 16, 2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

What to expect for the next 25ish minutes

- I/O Profiles for HPC AI applications
 - Bottlenecks when trying to run AI on HPC
 - How well does Al scale on HPC?
- Large-scale workflows combining HPC and Al
 - More bottlenecks
- A data-centric approach to Neural Network Training
 - How disruptive do we need to be?
 - Some results and recommendations

Traditional HPC

- Large monolithic codes
 - High fidelity simulations of physical phenomena
- Iterative in nature
 - Fairly predictable, roof model
- Write oriented (checkpoints, data)
 - Combined with visualization or in-situ analysis
- Workflow
 - Ensembles simulations
 - Analysis and viz

A few of our applications

- Wind Turbine (GE)
- Accelerator Physics (PIConGPU, WarpX)
- Fusion (GTC, XGC, GENE, KSTAR)
- Cancer research

- Combustion (\$3D)
- Climate (E3SM)
- Radio astronomy (SKA)
- Seismic Tomography Workflow
- Molecular dynamic (DeepDriveMD)

Why use HPC for AI?

- Training large Al models requires large amounts of computing resources
 - E.g. BERT model (3 years old) uses 110M parameters, Megatron-2 one trillion

Figure from: Evaluation of pre-training large language models on leadership-class supercomputers
Junqi Yin, Sajal Dash, John Gounley, Feiyi Wang, Georgia Tourassi in The Journal of Supercomputing, June, 2023

Why use HPC for AI?

- Inference is usually done by parsing large amounts of data
 - Cancer research / neuroscience typically classify hundred of thousand WSI / MRIs in one study
 - Sometimes large images: e.g. a single whole slide image corresponding to a single prostate biopsy core can easily occupy 10 GB of space at 40x magnification
- Typical ways of training AI on HPC
 - Data parallel: all processes store the model: replicated or in shared memory; data is distributed
 - Model parallel: model is distributed; each process goes over the same dataset
 - Pipeline parallelism: combine the data and model parallel methods

I/O patterns

- Three types of Al applications
 - Inference: dataset is distributed over processes
 - Training data parallel: dataset is distributed over processes
 - Training model parallel: all processes read the entire dataset
- Next few slides
 - I/O patterns in HPC before and after AI
 - Performance bottlenecks for the three types of Al

Summit Darshan logs

Summit 2018-still running

Titan 2012-2019

Jaguar 2006-2012

Comparative I/O Workload Characterization of Two Leadership Class Storage Clusters Raghul Gunasekaran et al. at PDSW 2015

Summit Darshan logs

- High rank variance
- Mostly small size access
 - Many consecutive reads
 - Many open/close

- Read/write pattern
 - 32% write intensive
 - 44% read intensive
 - The rest balance between RW
- Metadata intensive (41%)
 - 22% write intensive
 - 52% read intensive

Access Patterns and Performance Behaviors of Multi-layer Supercomputer I/O Subsystems under Production Load Jean Luca Bez et al. HPDC 2022

I/O patterns for AI applications

- There is a shift in the I/O patterns seen at the system level
 - Future I/O library design
 - Future system designers

Let's look at some application runs

Profiling typical HPC applications

- LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)
 - 32000 atoms

Class method	Number of calls	Percentage Time
<pre>Pair_LJ_Charmm_Coul_Long::compute()</pre>	101	59.9
<pre>Neigh_half::half_bin_newton()</pre>	12	11.4
PPPM::fieldforce()	101	5.7
<pre>Neighbor::find_special()</pre>	144365706	5.4

I/O patterns for AI inference

TIL classification application

Identify cancerous cells in WSI

I/O patterns for AI training

Multiple patterns of Open/Seek/Read/Close

I/O operation count - in 4 min and one node -

120

100

Scaling

- Larger models
 - More time for training, I/O becomes less frequent
- Multiple processes
 - Less data per process

• At scale

- Less frequent, less amount of I/O
- However, very frequently the I/O is concurrent (e.g. input, model sync)

Can we do worse?

- Coupling AI with HPC
 - Simplified AI Steering HPC scenario
 - Running the Gray-Scott simulation
 - Running an AI training code to create a digital twin of the Gray-Scott simulation

• **Slowdown** of 1.5x due to congestion

Simulation and analysis execution time if ran separately or coupled

Complex I/O stack

- Filesystems have multiple software layers
 - With inter-dependencies
- Each layer has tunable parameters
- Understanding performance is tricky
 - Especially when the stack is misused

Can we avoid the storage altogether?

Large-scale workflows

Data centric approach to neural networks

- Split the applications into units
 - Based on their I/O needs
- Stream data directly to everywhere that is needed
- Example
 - For training on a dataset from the PFS
 - · One application reads the dataset from PFS and streams each individual data
 - The second trains the model
 - For workflows the applications are probably already split

Small test

• Imagenet Training

Image N

Read Pre-proc	Al kernel
---------------	-----------

Small test

Data read and prepare Classification / Training Pytorch dataload Imagenet Training Move data to GPU ... threads ImageNet **Pytorch validation** or training on GPU Image N **Pre-processing** Read Pre-proc Stream Convert Classification / Training Data read and prepare Image N - 1 Read ADIOS format Stream Pytorch dataload Al kernel ... threads ... threads **ADIOS** ImageNet Store to file / Stream Move data to GPU **Pre-processing Pytorch validation** Dataset in **ADIOS format ADIOS format** or training on GPU

Same workflow but using two separate processes

Streaming ImageNet

- Performance of streaming
 - Less than 5% overhead
 - Using twice more resources
 - Unless we use in-line
 - For 16 threads
 - I/O time = AI kernel time
 - Initial version and streaming have the same cost

Total execution time of training one model using the initial code and the one through ADIOS

Streaming ImageNet

Training multiple models at the same time

Great, if all models train on the same datasets

Moving past ImageNet: Inference on a large dataset

- Everyone that subscribe to a stream gets all the data
 - Modified the I/O library to support multiple streaming formats
 - Round Robin, On Demand
 - Future: Random shuffle
 - Cancer research application
 - Classifying cancerous cells in WSI
 - VGG16 network

- Separating the process and streaming
 - **Speed-up** of 10x

Digital twin training

Separate runs

- Less than 3% performance degradation compared to separate runs
- Less variation
- If more models are needed
 - Overhead stays below 5% for 3 models
 - Variation increases with the number of nodes
- Throughput of 40 TFlops/node
 - On Frontier

Simulation and analysis execution time if ran separately or coupled

Execution time when streaming between coupled codes

Conclusions

- Many DOE proposals will develop AI / HPC workflows
 - HPC systems are not prepared for the I/O patterns of AI workflows
 - HPC I/O libraries and AI data loaders have individual views
 - Often contradicting optimizations
- Until something better occurs
 - It's better to avoid the filesystem
 - Separate workflow into units of work
 - Offload data transfer to streaming libraries

Next: run scale runs training LLMs on Frontier

Relevant publications

Junqi Yin et al. **Evaluation of pre-training large language models on leadership-class supercomputers** The Journal of Supercomputing, June, 2023

Gainaru et al. **Understanding the Impact of Data Staging for Coupled Scientific Workflows** IEEE Transactions on Parallel and Distributed Systems, 2022

Gainaru et al. Framework for Automating the I/O of Deep Learning Methods In revision, Transactions on Computational Biology and Bioinformatics, 2022

Suchyta et al. **Hybrid Analysis of Fusion Data for Online Understanding of Complex Science on Extreme Scale Computers**, Cluster, 2022

Jean Luca Bez et al. Access Patterns and Performance Behaviors of Multi-layer Supercomputer I/O Subsystems under Production Load, HPDC 2022

Wang et al. Improving I/O Performance for Exascale Applications through Online Data Layout Reorganization, IEEE Transactions on Parallel and Distributed Systems, 2021

Gainaru et al. **Profiles of upcoming HPC Applications and their Impact on Reservation Strategies**, IEEE Transactions on Parallel and Distributed Systems, 2020

Gainaru et al. **Speculative scheduling for stochastic HPC applications**, Proceedings of the 48th International Conference on Parallel Processing, 2019

Raghul Gunasekaran et al. Comparative I/O Workload Characterization of Two Leadership Class Storage Clusters, PDSW 2015

