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What to expect for the next 25ish minutes

• I/O Profiles for HPC AI applications
• Bottlenecks when trying to run AI on HPC
• How well does AI scale on HPC?

• Large-scale workflows combining HPC and AI
• More bottlenecks

• A data-centric approach to Neural Network Training
• How disruptive do we need to be?
• Some results and recommendations 
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Traditional HPC

• Large monolithic codes
– High fidelity simulations of physical 

phenomena

• Iterative in nature
– Fairly predictable, roof model

• Write oriented (checkpoints, data)
– Combined with visualization or in-situ 

analysis

• Workflow
– Ensembles simulations
– Analysis and viz
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A few of our applications

• Wind Turbine (GE)
• Accelerator Physics (PIConGPU, 

WarpX)
• Fusion (GTC, XGC, GENE, KSTAR)
• Cancer research 

• Combustion (S3D) 
• Climate (E3SM)
• Radio astronomy (SKA)
• Seismic Tomography Workflow
• Molecular dynamic (DeepDriveMD)
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Why use HPC for AI?

• Training large AI models requires large amounts of computing 
resources
– E.g. BERT model (3 years old) uses 110M parameters, Megatron-2 one trillion

Figure from: Evaluation of pre-training large language models on leadership-class supercomputers 
Junqi Yin, Sajal Dash, John Gounley, Feiyi Wang, Georgia Tourassi in The Journal of Supercomputing, June, 2023
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Why use HPC for AI?

• Inference is usually done by parsing large amounts of data
– Cancer research / neuroscience typically classify hundred of thousand 

WSI / MRIs in one study
• Sometimes large images: e.g. a single whole slide image corresponding to a single 

prostate biopsy core can easily occupy 10 GB of space at 40x magnification

• Typical ways of training AI on HPC
– Data parallel: all processes store the model: 

replicated or in shared memory; data is 
distributed

– Model parallel: model is distributed; each 
process goes over the same dataset

– Pipeline parallelism: combine the data and 
model parallel methods 
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I/O patterns

• Three types of AI applications
– Inference: dataset is distributed over processes
– Training data parallel: dataset is distributed over processes
– Training model parallel: all processes read the entire dataset

• Next few slides
– I/O patterns in HPC before and after AI
– Performance bottlenecks for the three types of AI
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Summit Darshan logs

Comparative I/O Workload Characterization of Two Leadership Class Storage Clusters 
Raghul Gunasekaran et al. at PDSW 2015
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Summit Darshan logs

• High rank variance

• Mostly small size access
– Many consecutive reads
– Many open/close

• Read/write pattern
– 32% write intensive
– 44% read intensive
– The rest balance between RW

• Metadata intensive (41%)
– 22% write intensive
– 52% read intensive

Request size
Access Patterns and Performance Behaviors of Multi-layer Supercomputer
 I/O Subsystems under Production Load
Jean Luca Bez et al. HPDC 2022
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I/O patterns for AI applications

• There is a shift in the I/O patterns seen at the system level
– Future I/O library design
– Future system designers

Let’s look at some application runs
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Profiling typical HPC applications

• LAMMPS (Large-scale Atomic/Molecular Massively Parallel 
Simulator)
– 32000 atoms
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I/O patterns for AI inference
TIL classification application
• Identify cancerous cells in WSI
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I/O patterns for AI training

• Multiple threads reading at the same time
• Multiple patterns of Open/Seek/Read/Close 

Training ImageNet

I/O operation count 
- in 4 min and one node -
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Scaling

• Larger models
– More time for training, I/O 

becomes less frequent

• Multiple processes
– Less data per process

• At scale
– Less frequent, less amount of I/O
– However, very frequently the I/O is 

concurrent (e.g. input, model sync)
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Can we do worse?

• Coupling AI with HPC
– Simplified AI Steering HPC 

scenario
• Running the Gray-Scott simulation
• Running an AI training code to 

create a digital twin of the Gray-
Scott simulation

• Slowdown of 1.5x 
due to congestion

Simulation and analysis execution time 
if ran separately or coupled

1.5x
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Complex I/O stack

• Filesystems have multiple software 
layers
– With inter-dependencies

• Each layer has tunable parameters

• Understanding performance is tricky
– Especially when the stack is misused

Applications

High-level I/O libraries

ADIOS2, HDF5, NetCDF

Middle-level I/O libraries

MPI-IO

Low-level I/O libraries
POSIX, STDIO

Parallel filesystem

Storage

Lustre, GPFS, PVFS, BeeGFS, …

Can we avoid the storage altogether? 
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Large-scale workflows
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Data centric approach to neural networks

• Split the applications into units
– Based on their I/O needs

• Stream data directly to everywhere that is needed

• Example
– For training on a dataset from the PFS

• One application reads the dataset from PFS and streams each individual data
• The second trains the model

– For workflows the applications are probably already split
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Small test

• Imagenet Training

Read Pre-proc AI kernel

Image N
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Small test

• Imagenet Training

Same workflow but using two separate processes

Read Pre-proc Convert Stream

Stream AI kernel

Image N

Image N - 1
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Streaming ImageNet

• Performance of streaming
– Less than 5% overhead
– Using twice more resources

• Unless we use in-line

– For 16 threads 
• I/O time = AI kernel time
• Initial version and streaming 

have the same cost

Total execution time of training one model 
using the initial code and the one through ADIOS
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Streaming ImageNet

• Training multiple models at the same time

Read Pre-proc Convert Stream

Stream AI kernel

Image N

Image N - 1

Stream AI kernel
Stream AI kernel

Model i
Model j
Model k

I/O proc

Great, if all models train on the same datasets
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Moving past ImageNet: Inference on a large dataset

• Everyone that subscribe to a stream gets all the data

• Separating the process and streaming 
– Speed-up of 10x

Different Pathology Whole Slide Images

10x

– Modified the I/O library to support 
multiple streaming formats
• Round Robin, On Demand
• Future: Random shuffle

• Cancer research application
– Classifying cancerous cells in WSI
– VGG16 network
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Digital twin training

• Separate runs
– Less than 3% performance 

degradation compared to separate 
runs

– Less variation
– If more models are needed

• Overhead stays below 5% for 3 models
• Variation increases with the number of 

nodes

• Throughput of 40 TFlops/node
– On Frontier

Simulation and analysis execution time 
if ran separately or coupled

1.5x

Execution time when streaming between
coupled codes
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Conclusions

• Many DOE proposals will develop AI / HPC workflows
– HPC systems are not prepared for the I/O patterns of AI workflows
– HPC I/O libraries and AI data loaders have individual views

• Often contradicting optimizations

• Until something better occurs
– It’s better to avoid the filesystem
– Separate workflow into units of work

• Offload data transfer to streaming libraries

Next: run scale runs training LLMs on Frontier
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Thank you Ana Gainaru
gainarua@ornl.gov
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