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What to expect for the next 25ish minutes

 |/O Profiles for HPC Al applications

« Bottlenecks when trying to run Al on HPC
 How well does Al scale on HPC?

o Large-scale workflows combining HPC and Al
* More bottlenecks

o A data-centric approach to Neural Network Training
 How disruptive do we need to be?
« Some results and recommendations
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Traditional HPC

e Large monolithic codes

— High fidelity simulations of physical
phenomena

e [terative in nature
— Fairly predictable, roof model

« Write oriented (checkpoints, data)

— Combined with visualization or in-situ
analysis

e Workflow
— Ensembles simulations
- Analysis and viz
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A few of our applications

Wind Turbine (GE)

WarpX)

Cancerresearch

ADIOS Performance on Frontier
B WarpX mXGC

WarpX 70GB - 360TB
XGC-ITER2.1-69 TB

128 256 512 1024 2048 4096
Nodes
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Accelerator Physics (PIConGPU,

Fusion (GTC, XGC, GENE, KSTAR)

Com

bustion (S3D)

Climate (E3SM)

Radio astronomy (SKA)

Seismic Tomography Workflow
Molecular dynamic (DeepDriveMD)

ECEI data

Quick an%/sis in ~10

minutes

Freq (kHz)




Why use HPC for Ale

e Training large Al models requires large amounts of computing
resources
- E.g. BERT model (3 years old) uses 110M parameters, Megatron-2 one frillion
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Why use HPC for Ale

e Inference is usually done by parsing large amounts of data

— Cancerresearch / neuroscience typically classify hundred of thousand
WSI / MRIs in one study

« Sometimes large images: e.g. a single whole slide image corresponding to a single
prostate biopsy core can easily occupy 10 GB of space at 40x magnification

e Typical ways of training Al on HPC

— Data parallel: all processes store the model:
replicated or in shared memory; data is
distributed

. . L. Ads 9 Bl 2 Sl B
- Model parallel: model is distributed; each B'i.’i’%fig% %33{‘?@3@ ol
process goes over the same dataset || g || g P
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/O patterns

* Three types of Al applications
— Inference: dataset is distributed over processes
— Training data parallel: dataset is distributed over processes
— Training model parallel: all processes read the entire dataset

e Next few slides
- 1/O patterns in HPC before and after Al
- Performance bottlenecks for the three types of Al
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Summit Darshan logs

100%
0%

Jaguar Titan Summit  Summit
2020 2022

m Read m Write

Summit 2018-still running

Titan 2012-2019

Jaguar 2006-2012

Comparative I/O Workload Characterization of Two Leadership Class Storage Clusters
OAK RIDGE Raghul Gunasekaran et al. at PDSW 2015
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Summit Darshan logs

* High rank variance

* Mostly small size access
— Many consecutive reads
- Many open/close
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e Read/write pattern
— 32% write intensive
— 44% read intensive
- The rest balance between RW

« Metadata intensive (41%)

— 22% write intensive
- 52% read intensive

Access Patterns and Performance Behaviors of Multi-layer Supercomputer
I/O Subsystems under Production Load
Jean Luca Bez et al. HPDC 2022



/O patterns for Al applications

e There is a shift in the I/O patterns seen at the system level
— Future I/O library design
- Future system designers

Let’s look at some application runs
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Profiling typical HPC applications

« LAMMPS (Large-scale Atomic/Molecular Massively Parallel

Simulator)
Class method Number of calls | Percentage Time
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/O patterns for Al inference

TIL classification application
» |dentify cancerous cells in WSI

~ Process 0
1
4
5
11
19
read
|7.920 ms |7,940 ms |7,960 ms |7.980 ms
o
7,933,000 ps 7,933,500 ps ) ) . 7,934,000 ps
open64 read
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/O patterns for Al training

I/O operation count
-in 4 min and one node -

120

« Multiple threads reading at the same time
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Scaling

e Larger models « At scale
— More time for training, 1/O — Less frequent, less amount of I/O
becomes less frequent - However, very frequently the 1/O is

. Multiple processes concurrent (e.g. input, model sync)

— Less data per process 10
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Can we do worse@¢

e Coupling Al with HPC
- Simplified Al Steering HPC
scenario
« Running the Gray-Scoftt simulation

* Running an Al fraining code to
create a digital twin of the Gray-
Scott simulation

‘ |0 min |18.657 min

~ Process 0
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e Slowdown of 1.5x
due to congestion
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Simulation
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Al training
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Complex I/O stack

* Filesystems have multiple software
layers

- With inter-dependencies
 Each layer has tunable parameters

e Understanding performance is tricky
- Especially when the stack is misused

Can we avoid the storage altogether?
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Applications

VADIOS2, HDFS, NetCDF

High-level I/O libraries

MPI-10

Middle-level I/O libraries

| POSIX, STDIO

Low-level I/QO libraries

| Lustre, GPFS, PVFS, BeeGFS, ...

Parallel filesystem

Storage
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Large-scale workflows

Steer:___
simulation

Digital
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Simulation/experiment data

Trigger

trainin
Analysis nur 9



Data centric approach to neural networks

« Split the applications into units
- Based on their I/O needs

« Stfream data directly to everywhere that is needed

« Example

— For training on a dataset from the PFS

« One application reads the dataset from PFS and streams each individual data
+ The second trains the model

— For workflows the applications are probably already split
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Small test

Data read and prepare

Classification / Training

e Imagenet Training

Move data to GPU

R T 1

: Pytorch validation 1

ImageNet
or training on GPU '

1
4
. :

Read Pre-proc Al kernel
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Small test

e Imagenet Training

ImageNet

Data read and prepare

Classification / Training

Move data to GPU

: Pytorch validation 1
I or training on GPU

Pre-processing

Image N
Read Pre-proc Convert Stream
Image N -1

Stream Al kernel

OAK RIDGE
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ImageNet

Data read and prepare

Pre-processing

ADIOS format

R ADIOS
Store to file / Stream

¥
Dataset in
ADIOS format

- i Read ADIOS format |

I I I . threads | .

1
: Pytorch validation :
| or training on GPU 1

Same workflow but using two separate processes




Streaming ImageNet

. Total execution time of training one model
« Performance of streaming using the initial code and the one through ADIOS

— Less than 5% overhead

IOLibrary
— Using twice more resources 80 === ADIOS
EEl PyTorch
« Unless we use in-line Al
60 o]

S
o

— For 16 threads
e |/O time = Al kernel fime

« Initial version and streaming
have the same cost

Execution time (s)

N
o

2 4 8
Number of threads used for reading

= W
16 32

o
[
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Streaming ImageNet

e Training multiple models at the same time

Image N 5000
I/O proc LGl Pre-proc Convert Stream 0 4000

Image N -1

0]
Model i Stream Al kernel 9 2000
Modelj | e Al kernel o
Model k | =i Al kernel g : 5 4 3 16 19

Number of models

——|nitial code —-—ADIOS2

Great, if all models train on the same datasets
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Moving past ImageNet: Inference on a large dataset

e Everyone that subscribe to a stream gets all the data

- Modified the I/O library to support
multiple streaming formats

« Round Robin, On Demand
e Future: Random shuffle
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e« Cancer research application

— Classifying cancerous cells in WS Diff
- VGGI16 network

2.7 7. 7w /
erent Pathology Whole Slide Images

- fdne Y4

o Separating the process and streaming
—- Speed-up of 10x
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Digital twin fraining

e Separate runs

- Less than 3% performance
degradation compared to separate
runs

— Less variation

— If more models are needed
« Overhead stays below 5% for 3 models

o Variation increases with the numlber of
nodes

* Throughput of 40 TFlops/node

— On Frontier
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Conclusions

« Many DOE proposals will develop Al / HPC workflows
- HPC systems are not prepared for the I/O patterns of Al workflows

— HPC I/O libraries and Al data loaders have individual views
« Often contradicting optimizations

o Until something better occurs
— It's better to avoid the filesystem

— Separate workflow intfo units of work
« Offload data transfer to streaming libraries

Next: run scale runs training LLMs on Frontier
o5 %OAKRIDGE
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- Thank you Ana Gainaru

gainarua@ornl.gov
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