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Intferactions between HPC and Al frameworks

e« Research on HPC |/O focused on modeling and simulation applications
- Handling large output and checkpointing the results
— Write operation bursts commonly dominate traditional workloads
— Analysis and viz typically access large portions of the data

« ML workloads perform smaill I/O reads spread across a large number of
random files

— Usudlly read-intensive and use many small files

 There is no well-established consensus on the preferred I/O stack for ML
workloads

- Many developers resort to developing their own custom solution
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Intferactions between HPC and Al frameworks

e« Research on HPC |/O focused on modeling and simulation applications
- Handling large output and checkpointing the results
— Write operation bursts commonly dominate traditional workloads
— Analysis and viz typically access large portions of the data

« ML workloads perform smaill I/O reads spread across a large number of
random files

— Usually read-intensive and use many small files

e There is no well-established consensus on the preferred |I/O stack for ML
workloads

- Many developers resort to developing their own custom solution

2. What are the limitations 3. What are the benefits of

1. What are the types of
integrating Al and HPC? unifying the Al and HPC
solutions ¢

workflows that combine
HPC and Al ¢
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Intferactions between HPC and Al frameworks

e Al-in-HPC: The Al system is intfroduced instead of a component or a whole HPC
simulation.
- e.g. medical pipelines

e Al-out-HPC: the outside Al system dynamically controls the progression of the HPC

workflow
- e.g. control of computational campaigns via reinforcement learning

o Al-about-HPC: the Al systems are concurrent and coupled to the main HPC tasks
- e.9., Al-based analysis and viz use the output of the HPC simulation to provide further insights

Update . R
Steer High-fidelity
Instrument | Data (plasma data) | parameters Adaptive 1 simulation
B I
A O
. o .. o Accuracy
1. What are the types of : - "‘.” (.
workflows that i
combine HPC and Al 2 ¢ Control (voltage on coils) Simulated data
Online loop, inference on model Offline loop, training the model
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TypeS Of Al +H PC WOrkﬂOWS Breakdown of the main characteristics used to define the

different behavioral motifs

Interaction Coupling Scope
Data flow Concurrency
. Control flow Dynamism
: Human interaction Federation
Simulation/t ' t dat MoTiF
iImulation/experiment data AIIHPC
Implementation
Trigger Workflows
: trainin Performance characteristics
S_teer Analysis cgning
simulation

Al-based steering ensembles of simulations

- HPC workflows, e.g. ensemble of simulations are “steered” by an
Al system

Multistage pipeline
- Pipeline of HPCs with Al-based functions between stages

Inverse design

- Al-driven optimizations are used to iteratively identify causal
factors from observational data

What are the types of

workflows that o e H H
combine HPC and Al ¢ DIin‘CI| repllca . o . o
- HPC concurrent with Al digital replicas predictions and health
moniforing

S8 Al-coupled HPC Workflow Applications, Middleware and Performance, 2024, Wes Brewer, Ana Gainaru, Frédéric Suter, Feiyi Wang, Murali Emani, Shantenu Jha



Limitations of current solutions

e Testcases 3 types of Al/HPC workflows
— Digital twin training for plasma physics simulation
- Workflow pipelines in cancer research
- Inverse design for plasma simulation®

e A data-centric approach o integrating Al in HPC
* Throughput limitations of the filesystem (in memory)
« Code coupling (strong/loose coupling)
* Large data space for training (steering the experiment)

 No consensus on the preferred |/O stack for
ML workloads

« Noschema )
integrating Al and HPC? * Not a consistent way of handling models and data
« Custom solutions

2. What are the limitations
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Limitation: Raw formats are common in Al

e Each solution uses different formats

— Each with diverse properties that can affect performance when storing and
retrieving ML datasets

- Many applications still rely on unoptimized solutions (raw text and image
formats)

- Once a model is tfrained, the input data format is lost

File Format ParallelI/O Compression Schema
TFRecords 579 §%9) @
Apache Parguet @ @ @
RecordIO §%) @ %9
NPZ ® X ®
ADIOS?2 Y Y Y
Raw formats (e.g. images, 579 ® ®

. %8{}.&%{2&5 video, text)




Limitation: Massive fraining datasets

 Naive uniform sampling of the input space
- Imbalance data coverage

Simulation/experiment data

« Some areas unnecessary over-sampled while others have sparse Triager
data coverage Steer - traigngi’ng
. . . . . . . eer = :
- ldentifying deficit regions is a challenging fask simulation MTRALRARIENE
« Current solutions are increasing the amount of training datato T Data H

eventually fill the coverage gaps -> Massive datasets

 Choosing the location of data samples

— Bayesian approach to capture uncertainty in a deep :
neural network R O R

Adaptive Model

e Steer an ensemble of simulations e Mmoo

20- 20+

—
(3]

3. What are the benefits of
unifying the Al and HPC

Predicted pfuse
=

Predicted pfuse

An adaptively frained model provides
more accurate prediction at high

(5]

solutions ¢

10 15 20
Training pfuse

electron fusion power output. e \
5 10 15 20 25 0 5

Training pfuse

, Mark Cianciosa et al, BTSD 2022
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Limitation: Filesystem throughput

200 4 Individual
Bl Coupled
e Separate runs =
— Less than 3% performance degradation | 1.5x
compared to separate runs 140

Execution time [s]

— Less variation 120

- If more models are needed Simulation Al training
« Overhead stays below 5% for 3 models Simulafion and analysis execution time
e Variation increases with the number of fran separately or couplea

nodes
200 Run
« Throughput of 40 TFlops == Cougled.
— On Frontier w0

160

Execution time [s]
=t
e
o

3. What are the benefits of — ;
unifying the Al and HPC 120 ? é

solutions ¢

Simulation Al training

Execution time when streaming between
% OAK RIDGE coupled codes
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Limitation: Code coupling

Instrument

« Coupling plasma codes | f steer experiment
- Streaming data between g
- g?%hpe"%\(/-toer?(sﬂé \F/)\/OST'DFOCGSS as pCIrT gg(rjorrulés’rlgrgs input —> quantity
A
— EFFIS workfow management system Storage
« Overhead of 1-5%

l

H ldentify areas Compute Al training
° Neor reC” Tlme that are missing accuracy
— Visualization

— Performance monitoring Starf new batch

« Command and control capabilities

Viz simulation

3. What are the benefits of \4raigeligligle]

Monitor perf

unifying the Al and HPC
solutions ¢
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« Many DOE projects are developing Al /
HPC Worl<ﬂowsJ J

— The 1/O solution for Al and HPC have
evolved separately

— There is no well-established consensus on
the |/O stack for AI-HPC workflows
o Our experience at large scale

— Use self describing formats for data
management

 Enables querying, model/data tracking,
reproducability

— It's better to avoid the filesystem
— Separate workflow intfo units of work
« Offload data transfer to streaming libraries
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Conclusions

Thank you !
gainarua@ornl.gov
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