
11

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Ana Gainaru
ADIOS2 User Group
Feb 28, 2025

ADIOS2 GPU aware
Defining application QoIs using
derived variables

22

ADIOS2 GPU aware

• GPU applications using ADIOS2
– Using CUDA/HIP/Sycl/Kokkos
– Using C++/Python

2

33

GPU-aware

• Allow applications to give ADIOS GPU buffers
– Decrease number of copies of the data
– Allow ADIOS to use GPU direct to storage, compression on GPU, or other optimizations
– Transparent performance portability to different GPU architectures

• Build ADIOS2 with CUDA support –D ADIOS2_USE_CUDA=ON

• The user can provide a memory space
– If not provided, ADIOS2 will detect automatically the

memory space

• ADIOS2 saves pointers to data and copies data to
internal CPU buffers
– Computes metadata for each Get/Put using CUDA kernels

 data.SetMemorySpace(adios2::MemorySpace::GPU);
 bpWriter.Put(data, gpuData);

Overhead for detecting
where buffers are allocated

CPU STD vector CUDA CPU buffer CUDA GPU buffer

5-6 µs 1-2 µs 1-2 µs

Performance of the GPU backend

44

Compression with GPU-aware I/O

• No changes required in the source code
– Operator attached to a variable
– Memory space attached to a variable

• Internal logic
– Metadata is computed using the GPU backend
– The operator is applied on the GPU buffer and the

compressed data is copied directly in the ADIOS buffer

auto var = io.DefineVariable<double>(”test", shape, start, count);

// define an operator
adios2::Operator varOp =
 adios.DefineOperator("mgardCompressor", adios2::ops::LossyMGARD);

//attach operator to variable
var.AddOperation(varOp, parameters);

var.SetMemorySpace(adios2::MemorySpace::GPU); // optional
bpWriter.Put(var, gpuSimData);

Operators that support GPU buffers:
• MGARD, ZFP
• The operators need to be built with GPU

enable

Device
buffer

Compute metadata

Put

Operator

Apply operator

Copy to host

ADIOS buffer

No
operator

555

Performance

• When not collecting any
metadata
• The GPU backend has the same

performance as the CPU backend

• Memory footprint
– CPU backend

• For chunks > 4MB keep user buffer
– GPU backend uses internal

buffers to hold the GPU data
– Memory accessible from the

Host
• It’s best to specify the memory

space

* Results for weak scaling on Summit, 64GB of data per node
* We measure the overall write throughput for all nodes

* Single core performance breakdown

66

Backends and bindings
6

• Supported
– Backend: CUDA and Kokkos (with CUDA, Sycl, HIP) backends
– Engines: BP5, SST, dataman

– Bindings: C++, Fortran, Python and in the next month C

$ ls ./examples/hello/:
bpStepsWriteReadCuda/
bpStepsWriteReadHip/
bpStepsWriteReadKokkos/

sstKokkos/
datamanKokkos/

$ ls ./examples/examples/hello/bpStepsWriteReadKokkos:
bpStepsWriteReadKokkos.cpp
bpStepsWriteReadKokkos.F90
bpWriteReadKokkosView.cpp

$ ls ./examples/examples/hello/bpStepsWriteReadCuda:
bpStepsWriteReadCuda.cu
bpStepsWriteReadCuda.py

Backends and bindings
CUDA C++

Kokkos C++

CUDA Python

call kokkos_allocate_view(ptr, gpuArray, ‘data’, int(N, c_size_t))

call adios2_define_variable(var_g, ioPut, &’gpuArray’,
 adios2_type_integer2, &2, ishape, istart, icount, ...)

call adios2_set_memory_space(var_g, adios2_memory_space_gpu, ierr)

call adios2_put(bpWriter, var_g, gpuArray, ierr)

7

Kokkos Fortran

float * gpuData;
cudaMalloc(& gpuData, Nx * sizeof(float));

auto gpuVar = bpIO.DefineVariable<float>(”gpuArray",
 shape, start, count);

gpuVar.SetMemorySpace(adios2::MemorySpace::GPU);
bpWriter.Put(gpuVar, gpuData);

Kokkos::View<float **, Layout> gpuData(”gpuArray", Nx,
Ny);

bpWriter.Put(gpuVar, gpuData);

import cupy as cp
gpuData = cp.array([[0, 1.0], [3.0, 4.0]], dtype=np.float32)

gpuVar = ioWriter.DefineVariable("gpuArray", npArrayWithSameType,
 shape, start, count)

gpuVar.SetMemorySpace(adios2.MemorySpace.GPU)
bpWriter.Put(gpuVar, gpuData.data.ptr)

88

Defining application QoIs
using derived variables

• Defining derived variables
• Writing/reading QoIs

8

99

What are derived quantities?

• Data or quantities of interest
– Not specifically the result of the principal calculation of the application
– Can be computed or extrapolated (derived) from primary data

• Why are they needed
– Queries and analysis

– Typical query
• Download 2D slices of the application output, manually choose areas of interest
• Query on quantities of interest in the area of interest

1010

Current solutions for derived variables

• Write side solutions
– Workflows include analysis codes running with applications computing and

storing the required derived data

• Read side solutions
– Visualization/analysis technology capable of computing derived variables on

the fly (e.g. Paraview)

1111

Current solutions for derived variables

• Write side solutions
– Workflows include analysis codes running with applications computing and

storing the required derived data

• Read side solutions
– Visualization/analysis technology capable of computing derived variables on

the fly (e.g. Paraview)

• Offload this task to ADIOS2
– Choose for the application the best

strategy for computing the derived
variables

– Hybrid solution
• Write only metadata

IO::CreateDerived(”Magnitude", velocityData);

for (i=0; i < simulationLoops; i++)
{
 // Compute new values for velocityData;
 IO::WriteToStorage(velocityData);
}

1212

Trade-off between strategies

• Store
– For low read network

bandwidth
– When storage is not an issue
– When the analysis requires a

lot of data

• Expression
– For exploratory analysis (large

amounts of data are
investigated)

– High read bandwidth• Stats
– For high compute units

• Or trivial derived variables
– When storage is an issue and data needs to be accessed remote
– When the query is based on the quantity of interest but the analysis

requires primary data

1313

Derived variables in ADIOS2

• Define derived variable on
Write side
– Expression on ADIOS2 variables
– Type of derived expression (Store,

Stats, Expression)

– Call Put for primary variables in
the normal way

• Inquire derived variable on
Read side
– Read data

– Query on stats

auto velocity = bpIO.DefineVariable<float>(
 ”velocity", shape, start, count);

 bpIO.DefineDerivedVariable("derived/magnitude",
 ”v = velocity \n”
 "magnitude(v)",
 adios2::DerivedVarType::StatsOnly);

$ bpls outputWithDerived.bp -l --show-derived

float velocitu_X 10*{60000} = 0 / 45
float velocity_Y 10*{60000} = 0 / 90
float velocity_Z 10*{60000} = 0 / 60

float derived/magnitude 10*{60000} = 0 / 100.623
 Derived variable with expression:
MAGNITUDE({velocity_X},{velocityY} ,{velocityZ})

 double derived/sqrt 10*{60000} = 0 / 6.7082

adios2::DerivedVarType::StatsOnly,
adios2::DerivedVarType::ExpressionString,
adios2::DerivedVarType::StoreData

1414

Supported derived expressions

• Scalar Math
– Addition
– Subtraction
– Multiplication
– Division
– Trig
– Square Root
– Pow

• Vector Math
– Curl3D
– Magnitude
– Cross 3D

• Statistics
– Mean
– Median
– Standard deviation

• Per process
computations

• Limitations
– No boundary

exchanges
– No timestamp

aggregations

Aggregated expressions are supported (e.g. sqrt(pow(x) + pow(y)))

1515

Performance

• The S3D simulation
– Generates 1.5 TB of data in each step through

24 primary variables
– Particles are stored in 3D arrays of 280x280x1280

size
• Velocity is stored using 3 of separate variables, each

requiring 64 GB on 900 ranks
– Query on magnitude either in-situ or on remote

laptop, plot of temp

• The e3sm simulation
– Outputs model data at the 6-hourly interval

generating around 24 GB through 9 primary
variables on 96 ranks

– Tropical cyclone track code queries the
magnitude of curl of velocity

A. Gainaru et al. To Derive or Not to Derive: I/O Libraries Take Charge of Derived Quantities Computation, SBAC-PAD, 2024

1616

Performance

• S3D queries
– The Write side strategy adds 64 GB

of data for each step
– The Read side strategy requires

storing 256 GB on the remote site
– For 900 ranks the stats are12 MB

• E3sm queries
– The size of the curl variables is 4 GB
– The Write side strategy adds 28 GB
– The stats for 96 ranks are 1 MB

The Hybrid strategy could be 1.5x slower
due to curl having high complexity

1717

Wish list for future releases

• Derived variables on the GPU
• Metadata for GPU buffers
• More derived expressions supported

• WarpX / GE / …

• Update the documentation

1
7

gainarua@ornl.gov
Send me your suggestions !

More performance results of the GPU backend will be
presented at the Kokkos User Group meeting in May
2025 in Chicago

