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Priority-based scheduling

• Why is priority-based scheduling needed?
– HPC wants to encourage large jobs

• With additional priorities based on  each configuration 

– Current HPC simulations generate up to PB data/step

• Often requiring post-processing tasks in real time

• Some tasks are more important than others

• This talk
– Our solution

• Limitations of current scheduling strategies

• Our philosophy and implementation

– Results

• Priority for large jobs

• In-situ tasks Jobs submitted to Mira and Polaris 
show increasing median wait times 

of hours, especially for large jobs
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Priority based scheduling

• Current solutions in HPC

• Easy-BF, Conservative-BF

• Our philosophy
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General scheduling problem

• Algorithm input
– Set of tasks that need to be executed

– State of the machine at current time

• Algorithm output
– Preliminary start time for each of the tasks in the queue

• Current solutions
– Batch scheduling

• Divide the list of tasks in batches and compute an optimal schedule within a batch

– Online scheduling

• Recompute the schedule on job end and when a job is added to the queue

Current time

Task queue: J1, J2, J3, J4

J0

J1
J2

time

J3
J4

Preferred in HPC
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• Schedulers in HPC: based on Easy-BF
– Jobs are ordered based on some priority criteria

• FCFS, LJF, SJF

– Backfilling based on the queue order

• Priority on what job can start the earliest

– Conservative-BF as an alternative

• Backfill with jobs in the order of their queue order

Current solutions

J0 finished, J1 and J2 are scheduled

• J1 and J3 start running

• J2 is guaranteed a start the latest 

at time T2
• J4 is mutable

Task queue: J1, J2, J3, J4

J0

J1
J2

time

J3
J4

T2
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• Schedulers in HPC: based on Easy-BF
– Jobs are ordered based on some priority criteria

• FCFS, LJF, SJF

– Backfilling based on the queue order

• Priority on what job can start the earliest

– Conservative-BF as an alternative

• Backfill with jobs in the order of their queue order

Current solutions Task queue: J1, J2, J3, J4

Task queue: J2, J4

Recompute schedule

J0

J1
J2

time

J3
J4

J0

J1
J2

time

J3

J4

T2

J0 finished, J1 and J2 are scheduled

• J1 and J3 start running

• J2 is guaranteed a start the latest 

at time T2
• J4 is mutable
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Limitation for priorities

time

J3

time

J1

Easy-BF Conservative-BF

J2

J5

J4

J1
Priority 
queue

• Goal: Minimize the wait time for high priority jobs
– Given fixed amount of resources

– The order of execution will influence the wait time

• Assuming we can set job priorities
– Simplest: based on job size/user etc

– Becomes more complex when priorities are based on the 
type of science being done
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J4

J5

J4

Example

J3J2

time

J1

J3J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is 
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting 
queue
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J4

J5

J4

Example

J2

time

J1

J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is 
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting 
queue

J3 J3
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J4

J5J4

Example

J2

time

J1

J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is 
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting 
queue

J3 J3
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Our proposal for scheduling algorithm

• Philosophy
– Simplicity

• System administrators understand the rationale behind scheduling decisions

– Robustness

• Accommodate diverse workloads

– Rely on qualitative constraints rather than rigid specifications

• Incorporate job importance
– At the granularity of the job (set by users)

– When all jobs share the same priority our algorithm reverts to Easy-BF
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Our proposal for scheduling algorithm

• Main idea
– Use several priority queues 

– Within a queue, jobs are scheduled with an EASY-BF strategy

– Between queues, jobs are scheduled conservatively
• Jobs from a queue with a higher index cannot delay jobs with a lower index

– Minimize response times for high-priority jobs

• How to design priorities?

– Value-based (priority classes: high, low, medium)

• E.g. pre-processing for training, compression are high priority, QoI are low 

– Frequency-based (run job X at least every T steps)

• E.g. compression is needed every step, QoI for visualization every 10 steps
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J4
J5

J4

Priority-BF with our example

J3J2

time

J1

J3J2

time

J1

J5

High priority: J1, J2, J3, J4
Low priority: J5

High priority: J1, J2, J3, J5
Low priority: J4

• Strategies for in-situ scheduling

– Jobs that did not finish by the end of the time window

• Kill all jobs (fresh start), keep all jobs that started, keep only high priority jobs

– Memory-less scheduling

• Each loop uses the same queue (J5/J4 will starve) or updated queue
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Evaluation

• Evaluation details and implementation

• Results for scheduling large jobs in HPC

• Results for scheduling in-situ tasks
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Evaluation

• Using the ScheduleFlow simulator 
– Simple to use and to add new algorithms

– For now, we don’t need system characteristics
• More complex simulators (BatSim or WRENCH) in the future 

– Priority-BF compared to Easy-BF and Conservative-BF
• Ordered using the same priorities 

• Experiments
– HPC scheduling

• Using ANL system logs with 3 levels of priorities

• Goal: decrease the average wait time for long jobs

– In-situ scheduling
• Neuroscience highly stochastic applications

• Random priorities using values or QoS frequency

Metrics

1. Response time for 
each job priority

2. Average job runs in 
one loop

3. Number of misses
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Implementation changes to the simulator

General changes

• Support multiple waiting queues

• New backfill strategy based on 
multiple queues

Required by the in-situ scheduling

• Priority to queue mapping

– Value-based

• Implement as many queues as priority 
classes

• Jobs do not transition from one class to 
another

– Frequency-based

• Two priority queues

• Jobs that need executing in the current 
step are high

• Everything else is low

• Jobs move from one queue to another 
based on past schedule

J3 J4

J1 J2

Backfilling 
strategy

Job queues Scheduler

…

QoS 1

…
J1

…

J4 QoS 4

Convert QoS 
to a priority level
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Logs of jobs in real systems

• Utilization is within 2% of Easy-BF and LJF

– Response time improves for high priority jobs (20-55%)

• From an average of 5h to 2.5h for Polaris and from 17h to 8h for Mira

– Response time decreases by 3x for low priority jobs

• From an average of minutes to 1.5h – 3h for Polaris and Mira

Response time for high priority jobs Response time for medium priority jobs Response time for low priority jobs
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In-situ data processing tasks

• Post-processing data to identify features
– E3sm (climate) data to identify the trajectory of tornadoes and refactor

– QIUP (medical) data to identify cancerous cells

• Post-processing data for training 
– FASTRAN (fusion) data to identify regions in the training space where data is missing

• Remote visualization 
– S3D (combustion) data to visualize temperature in regions of interest

• Surrogate model execution
– GE (aerospace) to predict the trajectory of the simulation

• Correctness checks
– GE (aerospace) data to audit properties of the data

• Post-mortem visualization and analysis
– For non-critical tasks that will help scientists after the simulation is done
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Results

• 20 jobs (nodes, reqest, walltime, priority) 

• 30 loops where loop i takes random time Xi

• 60 experiments with different random seeds

• Value and frequency based priorities

Value based priorities
Average number of times a job was executed across all 

simulation loops (max 30)

Frequency based priorities
Number of loops where a job was supposed to be 

executed and it wasn’t
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Conclusions
• Priority-based scheduling

– Requires separated scheduling strategies between 
different classes of jobs

– Necessary when dealing with limited time and resources

– Necessary when dealing with high job throughput 

• Early start guarantees high utilization without impacting the 
wait time for high priority jobs

• Future works include
– More simulations and experiments to understand the 

trade-offs

– Apply the scheduling in-situ tasks for several domain 
sciences

– Include decisions on where to compute tasks
• In-situ on the producer, consumer or in-transit 

gainarua@ornl.gov

• Scripts used and documentation: https://github.com/ORNL-Inria/PriorityBF

https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF
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