
11

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Priority-BF: a Task Manager for
Priority-Based Scheduling

Ana Gainaru, Guillaume Pallez, Scott Klasky

31st International European Conference on Parallel and Distributed Computing

Euro-Par 2025
Dresden, Germany, August 29, 2025

gainarua@ornl.gov

22

Priority-based scheduling

• Why is priority-based scheduling needed?
– HPC wants to encourage large jobs

• With additional priorities based on each configuration

– Current HPC simulations generate up to PB data/step

• Often requiring post-processing tasks in real time

• Some tasks are more important than others

• This talk
– Our solution

• Limitations of current scheduling strategies

• Our philosophy and implementation

– Results

• Priority for large jobs

• In-situ tasks Jobs submitted to Mira and Polaris
show increasing median wait times

of hours, especially for large jobs

33

Priority based scheduling

• Current solutions in HPC

• Easy-BF, Conservative-BF

• Our philosophy

44

General scheduling problem

• Algorithm input
– Set of tasks that need to be executed

– State of the machine at current time

• Algorithm output
– Preliminary start time for each of the tasks in the queue

• Current solutions
– Batch scheduling

• Divide the list of tasks in batches and compute an optimal schedule within a batch

– Online scheduling

• Recompute the schedule on job end and when a job is added to the queue

Current time

Task queue: J1, J2, J3, J4

J0

J1
J2

time

J3
J4

Preferred in HPC

55

• Schedulers in HPC: based on Easy-BF
– Jobs are ordered based on some priority criteria

• FCFS, LJF, SJF

– Backfilling based on the queue order

• Priority on what job can start the earliest

– Conservative-BF as an alternative

• Backfill with jobs in the order of their queue order

Current solutions

J0 finished, J1 and J2 are scheduled

• J1 and J3 start running

• J2 is guaranteed a start the latest

at time T2
• J4 is mutable

Task queue: J1, J2, J3, J4

J0

J1
J2

time

J3
J4

T2

66

• Schedulers in HPC: based on Easy-BF
– Jobs are ordered based on some priority criteria

• FCFS, LJF, SJF

– Backfilling based on the queue order

• Priority on what job can start the earliest

– Conservative-BF as an alternative

• Backfill with jobs in the order of their queue order

Current solutions Task queue: J1, J2, J3, J4

Task queue: J2, J4

Recompute schedule

J0

J1
J2

time

J3
J4

J0

J1
J2

time

J3

J4

T2

J0 finished, J1 and J2 are scheduled

• J1 and J3 start running

• J2 is guaranteed a start the latest

at time T2
• J4 is mutable

77

Limitation for priorities

time

J3

time

J1

Easy-BF Conservative-BF

J2

J5

J4

J1
Priority
queue

• Goal: Minimize the wait time for high priority jobs
– Given fixed amount of resources

– The order of execution will influence the wait time

• Assuming we can set job priorities
– Simplest: based on job size/user etc

– Becomes more complex when priorities are based on the
type of science being done

88

J4

J5

J4

Example

J3J2

time

J1

J3J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting
queue

99

J4

J5

J4

Example

J2

time

J1

J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting
queue

J3 J3

1010

J4

J5J4

Example

J2

time

J1

J2

time

J1

Easy-BF Conservative-BF

• Both schedulers
– J1 and J2 are guaranteed to start

– J3 is guaranteed not to start later than where is
scheduled

– Everything else is mutable

• If J4 has a high priority than J5
– Conservative-BF is preferable

• If J4 has a lower priority than J4
– Easy-BF is preferable

J5

Waiting
queue

J3 J3

1111

Our proposal for scheduling algorithm

• Philosophy
– Simplicity

• System administrators understand the rationale behind scheduling decisions

– Robustness

• Accommodate diverse workloads

– Rely on qualitative constraints rather than rigid specifications

• Incorporate job importance
– At the granularity of the job (set by users)

– When all jobs share the same priority our algorithm reverts to Easy-BF

1212

Our proposal for scheduling algorithm

• Main idea
– Use several priority queues

– Within a queue, jobs are scheduled with an EASY-BF strategy

– Between queues, jobs are scheduled conservatively
• Jobs from a queue with a higher index cannot delay jobs with a lower index

– Minimize response times for high-priority jobs

• How to design priorities?

– Value-based (priority classes: high, low, medium)

• E.g. pre-processing for training, compression are high priority, QoI are low

– Frequency-based (run job X at least every T steps)

• E.g. compression is needed every step, QoI for visualization every 10 steps

1313

J4
J5

J4

Priority-BF with our example

J3J2

time

J1

J3J2

time

J1

J5

High priority: J1, J2, J3, J4
Low priority: J5

High priority: J1, J2, J3, J5
Low priority: J4

• Strategies for in-situ scheduling

– Jobs that did not finish by the end of the time window

• Kill all jobs (fresh start), keep all jobs that started, keep only high priority jobs

– Memory-less scheduling

• Each loop uses the same queue (J5/J4 will starve) or updated queue

1414

Evaluation

• Evaluation details and implementation

• Results for scheduling large jobs in HPC

• Results for scheduling in-situ tasks

1515

Evaluation

• Using the ScheduleFlow simulator
– Simple to use and to add new algorithms

– For now, we don’t need system characteristics
• More complex simulators (BatSim or WRENCH) in the future

– Priority-BF compared to Easy-BF and Conservative-BF
• Ordered using the same priorities

• Experiments
– HPC scheduling

• Using ANL system logs with 3 levels of priorities

• Goal: decrease the average wait time for long jobs

– In-situ scheduling
• Neuroscience highly stochastic applications

• Random priorities using values or QoS frequency

Metrics

1. Response time for
each job priority

2. Average job runs in
one loop

3. Number of misses

1616

Implementation changes to the simulator

General changes

• Support multiple waiting queues

• New backfill strategy based on
multiple queues

Required by the in-situ scheduling

• Priority to queue mapping

– Value-based

• Implement as many queues as priority
classes

• Jobs do not transition from one class to
another

– Frequency-based

• Two priority queues

• Jobs that need executing in the current
step are high

• Everything else is low

• Jobs move from one queue to another
based on past schedule

J3 J4

J1 J2

Backfilling
strategy

Job queues Scheduler

…

QoS 1

…
J1

…

J4 QoS 4

Convert QoS
to a priority level

1717

Logs of jobs in real systems

• Utilization is within 2% of Easy-BF and LJF

– Response time improves for high priority jobs (20-55%)

• From an average of 5h to 2.5h for Polaris and from 17h to 8h for Mira

– Response time decreases by 3x for low priority jobs

• From an average of minutes to 1.5h – 3h for Polaris and Mira

Response time for high priority jobs Response time for medium priority jobs Response time for low priority jobs

1818

In-situ data processing tasks

• Post-processing data to identify features
– E3sm (climate) data to identify the trajectory of tornadoes and refactor

– QIUP (medical) data to identify cancerous cells

• Post-processing data for training
– FASTRAN (fusion) data to identify regions in the training space where data is missing

• Remote visualization
– S3D (combustion) data to visualize temperature in regions of interest

• Surrogate model execution
– GE (aerospace) to predict the trajectory of the simulation

• Correctness checks
– GE (aerospace) data to audit properties of the data

• Post-mortem visualization and analysis
– For non-critical tasks that will help scientists after the simulation is done

1919

Results

• 20 jobs (nodes, reqest, walltime, priority)

• 30 loops where loop i takes random time Xi

• 60 experiments with different random seeds

• Value and frequency based priorities

Value based priorities
Average number of times a job was executed across all

simulation loops (max 30)

Frequency based priorities
Number of loops where a job was supposed to be

executed and it wasn’t

202020

Conclusions
• Priority-based scheduling

– Requires separated scheduling strategies between
different classes of jobs

– Necessary when dealing with limited time and resources

– Necessary when dealing with high job throughput

• Early start guarantees high utilization without impacting the
wait time for high priority jobs

• Future works include
– More simulations and experiments to understand the

trade-offs

– Apply the scheduling in-situ tasks for several domain
sciences

– Include decisions on where to compute tasks
• In-situ on the producer, consumer or in-transit

gainarua@ornl.gov

• Scripts used and documentation: https://github.com/ORNL-Inria/PriorityBF

https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF
https://github.com/ORNL-Inria/PriorityBF

	Slide 1: Priority-BF: a Task Manager for Priority-Based Scheduling
	Slide 2: Priority-based scheduling
	Slide 3: Priority based scheduling
	Slide 4: General scheduling problem
	Slide 5: Current solutions
	Slide 6: Current solutions
	Slide 7: Limitation for priorities
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Our proposal for scheduling algorithm
	Slide 12: Our proposal for scheduling algorithm
	Slide 13: Priority-BF with our example
	Slide 14: Evaluation
	Slide 15: Evaluation
	Slide 16: Implementation changes to the simulator
	Slide 17: Logs of jobs in real systems
	Slide 18: In-situ data processing tasks
	Slide 19: Results
	Slide 20: Conclusions

